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TECHNICAL REPORT R-162

A THEORY OF SPACE-PROBE ENTRY UNDER CONDITIONS
OF HIGH MASS LOSS

By Freperick C. GRANT

SUMMARY

A theory of velocity limitation 1is developed on the
basis of a simple analytical model of a returning
space probe. The limiting velocity is the Ilowest
atmospheric entry speed for which the heat-protection
material of the probe is entirely consumed. The
geometry treated is a family of slender blunted cones
moving wn the direction of the axis. The face of the
cone is assumed to be continuously vaporized by the
flow. The entry speed is presumed to be so high
that a large fraction (or all) of the vehicle volume is
consumed in the entry. The entry speed is also
high enough for the dominant mode of heat transfer
to the wehicle to be through radiation from the hot
gas cap at the nose. In the regime of radiation
dominance, a second-order nonlinear differential
equation 1s found which describes the geometric and
dynamic history during atmospheric entry. By
means of solutions of the basic size-altitude equation
the velocity limit is traced out.

With a limiting form of the heat~input function,
explicit formulas for the limiting velocity of the
Samaly of truncated cones are developed. The limit-
ing velocity s found to be independent of the size of
the probe but dependent on the shape. Pointed
cones yield the highest limiting velocities for the class
of probes considered. However, flat-faced eylinders
yreld values nearly as high. The proportions of the
cylinders do not affect the Limiting velocity, and
therefore long rods and thin wafers have the same
values. Only the altitude of the high-mass-loss
region shifts with the probe size or with the cylinder
proportions.

INTRODUCTION

Analyses of atmospheric entry in the satellite
and escape speed rapges have not emphasized

mass losses since the mass fraction devofed to heat
protection is typically quite small. The case of
low-mass-loss probe entry in the meteoric speed
range was outlined in reference 1. At suffi-
ciently high speeds in the meteoric speed range,
however, the mass loss cannot be ignored for
reasonably sized vehicles.

The basic contrasts between meteor entry and
probe entry lie in the sizes, materials, and shapes.
Meteorites are composed of iron or stone, reach
enormous sizes, and seem to have irregular, blunt
shapes. Probes, on the other hand, cannot
weigh more than a few thousands of pounds, and
the materials and shapes can be chosen as de-
sired. For successful probes a definite fraction of
the mass, the scientific payload, must survive the
entry. Of course, in a sense, a mefeorite is
intrinsically a scientific payload.

The anticipated speeds of probe entry are well
beyond the capability of shock tubes. Shock
tubes are unlikely to achieve speeds much higher
than the present lmit of about 40,000 feet per
second. Information on entry at higher speeds
can, at present, be directly obtained only by
observation of meteors. Recourse must be made
to judicious extrapolation and to analytical

" methods for investigation of space-probe entry.

The problem of natural-meteor mechanics has
been successfully treated, in the main without
detailed consideration of the heat-input function.
(See ref. 2, for example.) Although shock-tube
experiments and theoretical analyses have pro-
duced realistic heat-input functions for simple
shapes and it is now possible to include realistic
heat-input functions in problems of entry me-
chanics, the range of applicability of the results
for high-mass-loss trajectories is not known.
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1e in space-probe veturn is found
near the Iou meteor ~velocity limit, the existence
of which was suggested in reference 3. According
to the analysis of reference 3, J.].lf:?(u)ﬂlkt} bodies
i the ballistic-parameter range of interest for
space probes {~10% Ib/sq ft) are complete
sumed when entry velocities are hwhor
roughly 50,000 to 60,000 feet per second.
1% is the purpose of this paper to develop the
theory of velocity limitation for probelike bodies.
This means that a choice of physui ally reasonable
shapes must be made and the survival of a definite
fraction of the initial mass must be provided.
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ANALYSIS
DYNAMIC EQUATION
The velocities and air Joads are so high for
ases to be considered that the acceleration du
to gravity will be neglecied. Neglect of grav
implies that the motion is linear. Another as-
sumption iz that the ent.ry is at such a steep
angle that the i’}!]]f'V’E‘d surf avec of constant atinos-
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model at constant acceleration due to gravity.
Such a model has an exponential variation of
density with altitude which may be expressed as

dp___dh
o (12)

The parameter A, is called the scale height of the
atmosphere and may be defined as the altitude
change for which the density changes by the
factor e, the base of natural logarithms. For the
simplified atmospheric-entry model under dis-
cussion, a generalized scale height A, may be
defined as the distance along the flight path in

which the density changes by the factor e. The
two parameters are related simply by
by’ (sin v)=h, (1b)

where v is the angle of the flight path with respect
to the horizontal.

The substitution of the density for time as the
independent variable will be made as a matter of
convenience. By combining the relations (l1a)
and (1b) the relation between ¢ and p is found as

do="22 dt (1)

The equation of motion, if the vaporized probe
material is assumed to leave with zero velocity
with respect to the probe, is

—mU=5 CpAl? (1d)
Equation (1d) becomes, after substitution of
equation (lc),

_dU _ashs’
~dp— % (1e)

where 6= gw'Tfl is the so-called ballistic parameter.

D
Depending on the geometry chosen, the coefficient

of U in the right member of equation (le) is an,
as yet, unspecified function of the nondimensional
size A of the probe. This functional relationship
will be denoted as

azhs’
f()\)=—2é— (1f)

so that the equation of motion has the form

(ZU .
~ S =INU (1)

HEATING EQUATION

The differential heat input to the probe material
will have the form

dQocwAW A dx (2a)

where dx is the depth of vaporization over an
area A,. The same differential heat input in
terms of flow variables will be assumed to be
expressible in the form

dQoc U Aggi(N)dt (2b)

where ¢;(A) is a function of the nondimensional
probe size A. The functional form of g, depends
on the analytical model. Combination of rela-
tions (1lc), (2a), and (2b) yields the form

—R g (20)

In the present analysis the shrinkage equation will

always be a special case of equation (2¢).
SIZE-ALTITUDE EQUATION

The analysis takes a compact form if equations
(1g) and (2¢) are combined. By differentiation
of equation (2¢) and substitution of equation (1g)
the following second-order size-altitude equation
is found, which is the basic equation of the present
analysis:

dk _g»
g\)

o -1 Y=o (30)

An advantage of equation (3a) is that it is inde-
pendent of the velocity, which appears explicitly
only when fixing boundary values of the slope by
the condition

~§—2=pf—lw—lg(x) (3b)

It is, for some purposes, more convenient to
write equations (3a) and (3b) in terms of the
variable w=log, p which is linearly related to the
altitude in an isothermal atmosphere at constant
a,. This transformation yields

el e—Def - TN (Y0 o)

— i) (3d)
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Examination of the basic equation (3¢) indicates
some general properties of the solutions which lead
to scaling laws with various parameters for
quantities of interest. For example, for param-
eters which appear as factors of g(), but do
not appear in f()), variation of these factors with
no change in the product produces no change
in the integral curve. A more general transfor-
mation is the change of the integral curves under
the variation of any parameter z which appears as
a factor of f(A). If we imagine an element of arc
of an integral curve of equation (3¢) to be trans-
lated in w by an amount ¢ so that

(3e)

w'=wto

. . . d .
the coefficient of the linear term in ﬁ}, of equation

(3c) undergoes the change
zev—>z'e" =2’ ¢7¢® (3f)
If we require

where z—z’ in the translation.
of 2’ that

z=z'¢° (3g)

2
then the -Z—w—); term of differential equation (3c¢) is

unchanged for the translated element. Thus any
integral curve, when translated, is a solution for
a different value of z. The functional dependence
of certain quantities of interest follows directly
from this invariance of the integral curves under
a translation ¢ plus an associated change of z.
Written in a form different from equation (3g),
the proper association is

(3h)

pz=Constant

The transformation described by equations (3g)
or (3h) will be called a p-z shift.

The character of the integral curves of the size-
altitude equation (3¢) for physically interesting
cases 1s indicated in figure 1. Two semi-infinite
regions of nearly constant nondimensional size )
are separated by a region of rapid A change, the
high-mass-loss region. In this narrow region
occurs the heating pulse, the acceleration pulse,

and the size-change (—Z—:) pulse which peaks at

the inflection point. The acceleration peak
follows the inflection point. The limiting velocity
is defined in terms of the limiting size on the right,

X
Ao
-~ Infiection
‘ Ao+
4 1 >
¥ 1 @
——= High loss )-7
Ficure 1.—Sketch of integral curve of size-altitude
equation.
Aoi. The velocity U._ (the value of U at

w=—) for which A, equals 0 is defined as the
limiting velocity U, For higher velocity at
w==—c the vehicle will burn up at finite altitudes
(unless the payload vanishes, which case, cor-
responding to meteorlike bodies, will be discussed
subsequently).

Although the size-altitude equation can be
regarded as a geometric relation, the terms have
dynamic significance. The only term unequiv-
ocally favorable to probe survival is that with
F(A) as coefficient, corresponding to loss of velocity
and mass during entry. High values of f(\) are
desirable, or alternatively, small values of é.._ are
desirable. More precisely, as will be seen later,
it is a high mean value of §7! that is desirable.

ANALYTICAL MODEL

In view of the facts that high radiation inten-
sities are associated with the large enthalpy
changes in normal shock waves and that radiative
heat transfer is increasingly dominant at space-
probe (meteoric) speeds, it seems desirable that
the surfaces of space probes should have small
fractions of the surface area exposed to strong
shock waves. This suggests that the basic
shape of space probes, unlike that of meteors,
should be slender so that strong shock waves
can exist only at the foremost parts. A slender
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blunted cone appears to be a possibility since the
area of the blunted nose will increase with mass
loss and the drag will thus increase at the lower
velocities for which radiation intensity is lessened.
Detailed analysis will show whether these simple
considerations are justified.

Geometry.—The axisymmetric geometry is indi-
cated in figure 2. The slope of the flanks of the
cone with respect to the axis is so small that the
heat absorbed by the flanks can be neglected
in comparison with that entering the face. As
the face recedes it is presumed to maintain itself
as a plane perpendicular to the flow. The pay-
load is idealized as a point mass m, with the
entire volume of the vehicle devoted to heat-
protection material. The heat-protection ma-
terial is assumed to have a constant heat of
sublimation AW.

The weight of the probe is found to be

T o DY 3
ma»gsz—l—m,,a,,:ng 5T [1—A—2)3]+ma,

where V is the probe volume, w is the weight density, and m, is the payload mass.

f(\) thus becomes

___aohs/__ a/ahsl
)= 28 =3 wl 1
1—p 1—n
so that
aghs’

4

where p=1;n is the payload fraction and A, is

the initial nondimensional size.
Heating function g(A).—The stagnation-point
heating rates on a blunt body have the variations

Gsr, c=0p™U™ 1 (Convective) (5a)
vz

Gst,r= BPTUS:E

where z is a characteristic length of the body.
(See, for example, refs. 4 and 5.) The values of the
exponents indicated by references 4 and 5 are

(Radiative) (5b)

m :% )":2 .
Convective Radiative (5¢)
n —3 s=14

) - \2L/
SN Sy T W iy € P 1+<2DI>2

—

Figure 2.—Sketch of truncated cone.

Ballistic function f(\).—For the flat-faced cone
in Newtonian flow the quantity CpA4 is found to be

a—+(57)

Coafrr
+<ﬂ>

(4a)

(4b)

The function

a-n+(57) »

If heat inputs of the types indicated in relations
(5a) and (5b) are considered to be operative, the
rate of change of the nondimensional length A is
given by

v 1 _L[(_q:>
—a Mwaw ) @ OS=5m (G ) g

+ i) Qsz,r:l Srace  (5d)
qsi/r

Equation (5d) assumes that all the heat input is
effective in the sublimation process. In other
words, conduction is neglected. When the rela-
tions (5a) and (5b) are introduced into (5d), the
result is

1

i

pm—lUn—l

_D_ ks [(i) e
dp wAW st cLs/zﬁ
L

aq D
+(qi BTN | (o
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where the characteristic length 2z is the face
diameter.

The rapid rise of the radiative term with veloeity
implies that for sufficiently high speeds the inte-
grated heat input of the radiative term will domi-
nate the input from the convective component.
For sufficiently low speeds the contribution of the
convective term will dominate. The case to be
considered is that in which the contribution of the
radiative term is dominant. Suppression of the
convective term of equation (5e) yields the result

7—1 L
dp =Kp U~ (1—N\) (51)

where
(52)

“wAW A

so that equation (3a) becomes

DA FL—1)esf ) — SN f%)?:o (5h)

Numerical integrations of equation (5h) using the
results of reference 5 (r=2, s=14) have shown
that with steep entry and high mass loss, for
practical probe sizes, the radiative heat inputs
indicated by the radiative term of equation (5e)
exceed the kinetic energy available in the flow
except at the beginning and at the end of the
trajectory. For completeness, however, the tra-
jectory properties corresponding to equation (5h)
are indicated in the appendix,

A vphysically acceptable radiative heat flux
cannot exceed the flux of kinetic energy onto the
face of the probe. This flux is

1 3
5°U

per unit area. Let the limiting radiative heat
flux be written as

aQ . .

=135 P A, (51)
An upper bound to the radiant heat flux is found
if it is assumed, in coordinates moving with the
probe, that all the incident energy flux is con-
verted into photons, half of which enter the body
and half of which escape. These assumptions
require that

-
IIA
DO

(5))

and therefore the radiative heat input cannot
exceed half the kinetic-energy flux. Because of
the small range of validity of equation (5b) for
the high-mass-loss trajectories to be considered,
the heat-input function (5i) will be adopted.
On comparing formula (5i) with (2b) the basic
equation (3a) is seen to take the simple form

2\ a
T PO =0 (5k)
with
D _ g (50)
dp
where
r hs, -
K= AW aL (5m)
or, alternatively,
T2 1205/ ) —1) P (5m)
with
AN 2rr urre
—%—K eU (50)

Limiting velocity.—For the separable equation
(5k) a first integral may be obtained by quadrature
as

—+2ff()\)d)\ Constant (6a)

and a second integral by quadrature as

Y dan
p-+-(Constant) —J‘(Constant)—?lff()\)d)‘

If by definition

(6b)

X
FO)=2 f )N (6¢)
0
the first integration constant is found in terms of
entry conditions as
Constant=F(\.._) —K'U% _ (6d)

The limiting velocity is found directly as the

value of UL, _ corresponding to g)‘~0 at A=0:

F(\.2)

U12 K, (69)

On a p-z shift it is found that the limiting velocity
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is independent of size L, weight density w, and

effective scale height h/. In fact, the only
indicated dependence is the following:
dloglU, 1
5 (6f)
0 log éﬂ{ 2

Dynamic variables.—It is convenient to express
the deceleration @ and velocity U in terms of the
solutions A(p). For the velocity we find

d\

U == K (70)

and for the dimensionless acceleration

U pf(>\)

G=— a,  ahs’

{7b)

F(n) is used for the integral on the left-hand side.

The peak acceleration occurs on the condition

G= (ZGP 0 (7¢)
dp

Differentiating the right member of equation
(7b) with respect to p and setting the derivative
equal to zero gives, at the peak G condition,

d loge f(A) dr

207 (N =1+ Az (7d)

Relation (7d) is a generalization of that of the
analysis of reference 6 wherein 2pf(\) was found
to be 1 at peak @ for the case of constant shape
and size.

Truncated cones.—Only the case of limitling
velocity will be considered; therefore the integra-
tion constant of equation (6a) is zero when

A closed form of the function F()\) can be ob-

tained for truncated cones in terms of elementary functions, but the integral of equation (6b) leads

to transcendental functions. The first integral is

FN) = 162“

where

and for limiting velocity

A T -
Ui—da, ?(1—11)-2%) [

To maximize U2 the value of F(A) must be as
large as possible, which suggests that the integra-
tion of f(A) over A, to which F(A) is proportional,
should extend over as large a range as possible.
However, the effect of the indicated extension of
the range of integration is offset by a decrease in
the value of the integrand at every A. Calcula-
tions have shown that the effect of moving the
integration limit is the larger. Therefore A\._
should be unity and the lower limit of the bracket
in relation (8d) should be zero. Initially pointed
cones are thus indicated as having the highest
limiting velocities. As ¢—0, the limiting velocity

686-823— 64—2

(l—}—w) ‘l:—bz’3 log, (b—u?)—a log,

(57

b= 1*[1‘—#(1——)\
1—u

b log, (b—u*)—a log”\/b”3+b1/3u+ ~—=+/3a tan-

__u :_ 1
= ty3a tan~! ) 3,7,‘4] (8a)
1—X

b2/3+b”3u+ 2 2h13 4y
2
) >0 (8b)
o=)l=1 (8¢)
b1/3_u

1

‘@L] (8d)
201344 _| aeo—

indicated by relation (8d) approaches the value
which, as shown in the next section, corresponds
to a cylinder. At the other extreme (a—),
corresponding to a shallow cone of zero length,
the limiting velocity approaches the form

AW 1 [~ — \/3
Uz2—4a,, - b,,/a (—\3 tan 1 1_‘_25{/—3

b1 —1
e x/b"’/3—§—b’73;{—:1) (8e)

This result must be given a cautious physical
interpretation. On the present model the drag
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of the flanks is, in a sense, free, since no loss of
material from the flanks is allowed. The relation
(8e), corresponding to the limiting shallow cone,
puts the highest possible drag in the place where
it costs nothing. This consideration also applies,
in a weaker form, to the earlier result which indi-
cated that the pointed cone yields the highest
limiting velocity. Only for flank slopes so shallow
that the flank heat input is truly small compared
with the face input can the present model be con-
sidered valid. The infinitely shallow cone ob-
viously does not meet this requirement. A
quantitative estimate of the flank input is given
in the appendix.

For the second integral (eq. (6b)), with p=0

at A=A,
Ao — N\

= S f

o f 7oy (8)

Cylinders.—The case of a cylinder corresponds
to that of a truncated cone for which D/L-—-0
and L—o. If L is redefined as the original
cylinder length (A._ is thus always unity),

CDA:g b (9a)
V:Z 2L (9b)
-1
=2 (2 ) (9¢)
o ol
7wl (9d)
The function F(X) is
FO=2"10g, (1+152)  00)
and the limiting velocity is given by
Ut=4a, évl] loge 1 (o)

The absence of D/L (now the diameter-length
ratio) indicates that there are no preferred pro-
portions. Thus wafers and rods have the same
limiting velocities. (Since (A has a large value
at every value of A, the cylinder yields high limit-
ing velocities.)

Sphere.—The case of the homogeneous shrinking
sphere was treated in reference 7. If this spherical
configuration is formally converted into a space

probe by addition of a point mass at the center
of the sphere the function f(\) becomes

3ah, N2
foy=gde’ X (100)
N+,
"
h ’
= (10b)

where A=r/R and R=r,_. An integration yields

FO)=2" ohs’ . log, (1+— x3> (10¢)
and the limiting velocity is
o ,_2004-- log, ( ) (10d)

The limiting velocity for the modified solution of
reference 7 is thus v27! or 0.707 times the limiting
velocity for the flat-faced cylinders. Again, as
in the case of the cones and cylinders, there is no
size dependency.

NUMERICAL RESULTS

For the cones the value D/L=0.3 has been
adopted in the calculations. This value ylelds a
shape that is slender enough to have little convec-
tion to the flanks (see appendix). The value
hy=25200 feet, which corresponds to vertical
entry into the atmosphere, has been used through-
out. The formlulas of the analysis indicate the
variation with A,” of properties of interest. For
example, the air loading G at each value of A
varies inversely with A,’.

The limiting velocities indicated by the analysis
for the limiting heat function are indicated in
figure 3. Certain cases may be cited as examples.
With a cylinder made of a material such as graphite
(AW=15,000 Btu/lb), a payload fraction u of
¢ '=0.368, and 5=1/2, the indicated limiting
velocity is about 55,000 feet per second (fig. 3(c)),
which is about the launch speed for escape from
the solar system. For the  value of 1/4, the limit-
ing value jumps to 78,000 feet per second, some 40
percent higher than launch speed for solar-system
escape, and well beyvond the 50,000- to 60,000-
feet-persecond range suggested in reference 2.
The results of reference 8 indicate smaller mean
values of 5 than 1/4 for the high densities and
speeds experienced in the region of high mass loss.
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The unbounded increase of limiting velocity with
vanishing payload implies that there is, in
principle, no limit to the payload size or entry
speeds possible. The payload fraction need only
be decreased to that corresponding to the desired
entry velocity and a large enough probe con-
structed to realize the assumed fractional value.
Aside from the fact that there are practical limits
on the size of probe which may be launched,
there is, more fundamentally, the limited thick-
ness of the earth’s atmosphere to be considered.

With increasing probe size the position of the
high-mass-loss region moves to lower altitudes.
It should be recalled, however, that the air loads
and limiting velocity do not change with size
(eqs. (6e) and (6f)). A convenient reference
point near the end of the high-mass-loss region is
the peak G point. For some size of probe the
peak G point will occur at sea-level density
{(w=-—6.03 in English units). For sizes larger
than those which put the peak @ point at sea
level, survival is clearly impossible. In figure 4
the size limitation imposed by the finite depth of
the atmosphere is indicated in terms of the loca-
tion of the peak @ point as a function of size and
payload fraction with w=140 lb/cu ft. For
welght densities other than 140 lb/cu ft, figure 4
applies if the actual value of L is multiplied by
w/140. The characteristic length used for the
shrinking sphere is the diameter 2.

If the evidence of figure 4 is regarded as suffi-
cient, it might be said that at x=1/2 a limiting
size of L=20 feet exists for the pointed cone and
the cylinder, and a somewhat smaller value for
the shrinking sphere (fig. 4(d)). However, the
width of the high-mass-loss region must be con-
sidered. This width varies with probe shape so
that a separate limiting size is indicated for each
probe shape. The discussion will be limited to the
case of u=1/2, which is the least favorable of the
cases presented in the sense that higher payload
fractions lead to smaller limiting probe sizes.

The width of the high-mass-loss region is in-
dicated in figure 5 in terms of the G pulse ex-
perienced by the various probes. The shape of
the G pulse has a characteristic form independent
of the size L and the probe material as represented
by w and AW, but dependent on the probe shape
represented by f(A). The pulse shapes are seen
to vary from narrow, in the case of the pointed
cone, to extremely broad, for the case of the sphere.

The difference in pulse width is associated with
the differing behavior of f(A\)océ™ as the size A
goes to zero. For the pointed cone, the value of
the ballistic parameter § approaches a finite limit,
while for the sphere, § becomes infinite with vanish-
ing radius.

Since all the pulses are actually of infinite
breadth, the position of the peak ¢ point does not
actually mark the end of the high-mass-loss
regions. Figure 5(d) indicates the deceleration to
be essentially complete within about a scale height
of the peak @ point for the pointed cone and within
about two scale heights for the cylinder. The
decay of the @ pulse is so much slower for the case
of the shrinking sphere that no values of decay
length or limiting size will be given for the sphere.
Use of the decay lengths for the cone and cylinder
in conjunction with figure 4(d) indicates a limit of
L=7 feet for the pointed cone and L=~2.5 feet for
the evlinder. The corresponding probe weights for
w=140 lb/cu ft and D/L=0.3 are 2X10% pounds
for the pointed cone and 33102 pounds for the
cvlinder. Increase of the diameter does not affect
the position of the high-mass-loss region in the
case of the cylinder.

The no-loss curve of figure 5 is taken from
reference 5. It may be noted that low-mass-loss
entry leads to a @G pulse that is broad compared
with that experienced in the high-mass-loss entry
of cylinders and pointed cones. Only the high-
mass-loss sphere has a broader @ pulse.

The increase of pulse breadth with increasing p
indicated by figure 5 is associated with the in-
crease of inertia of the payload with u. In analyt-
ical terms, the value of f/(\) is lowered at every N
value by increase of u.

The values of peak @ are indicated in figure 6
for a range of values of AW/y, the effective heat
capacity. The peak G value (and all other G
values at a given value of ) is proportional to the
quantity AW/y. Limiting velocity is thus un-
bounded for unlimited inerease in effective heat
capacity as well as for vanishing u. However, the
position of the high-mass-loss region does not
shift with AW/y, but rather with size L, as already
shown in figure 4. Although the pointed cone
with 17/L=0.3 has only a slightly higher limiting
velocity than the cylinder, it is subject to consider-
ably higher loadings. These higher loadings are
associated with the absence of high (",A values un-
til late in the trajectory for the case of the pointed cone.
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Although the limiting velocity of the pointed
cone tends to increase with cone angle, the limiting
velocity is bounded, in the present analysis, even

for the case of the infinitely shallow cone. The
values of the limiting velocity of the pointed cone,
in units of the limiting velocity of a cylinder, are

indicated in the following table for several values of p.

When up<% the limiting velocity of the zero-
length cone (D/L=w) is less than 60 percent
greater than that of the cylinder. The slender
pointed cone with D/L=0.3 (cone half-angle of
8.5°) has a limiting velocity less than 2 percent
higher than that of the cylinder when p<(3. TFor
other cones slender enough to permit neglect of the
heat input to the flanks, similar small gains are
indicated.

DISCUSSION OF ANALYSIS

The case of meteorlike bodies appears in the
present analysis as the limiting case of vanishing
payloads u—0. In this limit, for all three kinds of
bodies considered (blunted cones, cylinders, and
shrinking spheres) the limiting velocity becomes
infinite. In fact, for all heat-input functions cor-
responding to 7=1 and s =3, it can be shown that
the limiting velocity becomes infinite as u—0.
To obtain finite values of limiting velocity at
1r=0, a value of A\,; >0 must be used as the de-
fining value.

A convenient way of considering the heat inputs
for atmospheric entry is in terms of the initial
kinetic energy of the body. For entries at limiting
velocity the heat capacity of the body H.._
divided by the initial kinetic energy of the body
T._ at limiting velocity indicates the fraction of
the initial kinetic energy of the body returned to
the body as heat under the most extreme condi-
tions of survival. For flat-faced cylinders, which
vielded values of limiting velocity that are high
for the class of probes considered in the present

Ratio of limiting velocities of pointed cone and cylinder for DL of—
K® e , —_
0 0.3 ‘ 0.6 ’ 1.2 ‘ 2.4 ®
1% 1 1. 011 1. 042 1. 124 1. 259 1. 412
Y4 1 1. 013 1. 051 1. 152 1. 316 1. 497
el 1 1. 015 1. 058 1. 170 1. 352 1. 550
Y% 1 1. 017 1. 062 1. 188 1. 384 1. 598

analysis, the ratio is found to be

1
T _Tan (11a)
Again, there is singular behavior for the case of
u=0, which corresponds to meteorlike bodies. The
ratio H._/T._ can be made arbitrarily small for
small enough values of u. The singular behavior
of limiting velocity as the payload vanishes empha-
sizes the distinction between the cases of meteor
and probe entry. Equation (11a) may be inter-
preted as indicating effective values of 5 or of

AW/y. The effective values of 7 are approxi-
mated by
H,. 1
n=2 T loge; (1) (11b)
in the case of high mass loss, and by
H,_
n=2 T (u=1) (11c)

for the case of low mass loss. Alternatively, effec-
tive values of AW/y are given by

AW 1 Ui
o 1 2a 11d
n ]-Oge ;ﬁ g ( )
which becomes, for low mass loss,
AW 1 U3
(n=1) (11e)

=
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According to the analysis there is no effect of
size on limiting velocity, at least for the limiting
form of the heat function. The only effect of
increasing size is a lower altitude for the high-mass-
loss region. On a limiting trajectory all the
volume must be consumed, in the present model,
and when more volume is provided a longer path
is required for complete consumption when the
initial velocity is the same in every case.

Although the anticipated advantage of the
slender probe is borne out by the fact that pointed
cones yield the highest limiting velocity, a physical
interpretation must be made carefully. The
neglect of heat input to the flanks causes the
analysis to show an advantage for the largest flank
area, which occurs on the pointed cone. Among
pointed cones, those with the steepest flanks
(a—=), and consequently the highest flank drag,
have highest limiting velocity. This result follows
of()

oa

from the fact that =>01in theinterval 0 <A1,

Obviously the flank input cannot be neglected
on such shallow cones. For initially pointed cones
which are so slender that the flank input is small
compared with the face input, the limiting velocity
is not much higher than that of flat-faced cylinders.
It can be shown by integration of the proper
JFO\) that another shape with the same limiting
velocity as a flat-faced cylinder is a pointed cone
traveling base foremost.

Insofar as shape is concerned, the key require-
ment for high limiting velocity is a high value of

the integral
L%
0 )

or, in other words, a high value of the mean re-
ciprocal of the ballistic parameter with respect to
the changing size of the vehicle. This may be
more clearly seen, perhaps, if the ratio of equation
(1g) to equation (50) is taken, with the result
dau aghs’

do 2 U
T b a
do wAW 2L

(110)

(11g)
pU?

or
AU =24, 2V L oD (11h)
7 6 )
which shows in a differential form the advantage
of small 6.

CONCLUDING REMARKS

The analysis has shown that, for a limiting heat-
input function and a simple probe model, there
is no limit to the size of probe that may survive
entry to the earth’s atmosphere except that
imposed by the finite depth of the atmosphere.
In the absence of a payload there was found to be
no limit to the possible entry speed. This zero-
payload case corresponds to that of meteor entry.
For finite payload fractions, entry speeds consid-
erably in excess of the launch speed for solar-
system escape were found to be possible.

The form of probe for highest entry speed was
expected to be slender. This expectation was
borne out when the analysis indicated that slender
pointed cones have the highest value of limiting
speed for the class of probes considered. How-
ever, the entry speed for cylinders was nearly as
high and was independent of the cylinder pro-
portions, so that wafers and rods have the same
values. The indicated slight advantage of the
slender cone was thought to come, in part at least,
from the form of the analytical model and not
from any real physical advantage. In sum, for
the extreme case of high-mass-loss entries there
is, in the present analysis, no clear indication of
desirable proportions. The fact that high entry
speeds were found for the cylindrical probes
suggests that the blunt body indicated for low-
mass-loss entries in which convective heat transfer
is dominant may again be suitable in the extreme
case of high-mass-loss entries in which radiative
heat transfer is dominant.

LancLEY ReEsEaArRcH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LancLEY StaTioN, HaMmproN, VA., November 29, 1962.



APPENDIX

FUNCTIONAL RELATIONS, SCALING LAWS, AND ESTIMATES OF FLANK HEAT INPUTS

As mentioned in the discussion of the heating
function g()\), the experimental variation of
radiative heating obtained from reference 4,
which indicates values of 7=2 and s=14, leads to
excessive values of radiative heating at the
densities and speeds of steep high-mass-loss entries
for practical probe sizes. However, the analysis
holds for other values of r and s as long as the
stagnation-point heating rate is proportional to
the size of the face. The trajectory properties
corresponding to g(\)=K(1—X\) thus may have
some future interest. Under a p-z shift the
following functional relations are found by use
of equations (3d) and (7b):

r—1 T
(£,> é) Us~'=Constant
hs a,
2r  2(r—1) 2r

2 2(r—1)

QL 1w =1 ¢, 751 (h,")'” T =Constant (A2)

(A1)

so that, specifically,

ologU 7

dlog L~ 51 (43)
Olog G 2r
dlog L o—i (A4)

For limiting velocities there is thus a size effect
favoring smaller sizes (which might be expected
since the heating per unit area is proportional to
size) on the assumed heat-input function.

The formulas (A1) and (A2) derived for the
function g(\)=K(1—2\) apply for the function
g(\) =K’ if in the exponent of L the quantity r is
replaced by r—1. The corresponding functional
relations on a p-z shift for the case of g(\) =K’
may thus be written immediately as

r—1
(%) a,” "L ' =Constant (A5)

2(0r—1) 1_72r 1_2(r—17)
G(wL) s 1a, *1(hy’) 7! =Constant

(A6)

16

and
dlogU  r—1
olog L~ "s—1 (A7)
Olog G 2(r—1)
dlog L~ s—1 (A8)

For the limiting heat function g(A\)=XK" the asso-
ciated exponents are r=1 and s=3; therefore
relations (A7) and (A8) indicate the absence of a
size effect on limiting velocity. This is consistent
with the fact that the assumed heat input per
unit area for g(O\)=K" is independent of size.

Independently of the assumed heat function,
for the blunted cones and the cylinders, the posi-
tion of the high-mass-loss region moves on a p-z
shift according to the condition

Bohs” _
P ol =Constant (A9)
or
Ow 4 (A10)
d log, 2
t=13 aﬂhsl

The effect of an increase in size is to put the high-
mass-loss region at lower altitudes. Changes in
w, a, and h, are equivalent to size changes, the
direction of the equivalent change being indicated
by equation (A10).

In the direction of smaller sizes, the effect of
convection will become relatively more important
since the ratio of convective heating rate to radi-
ative heating rate increases as p=*/2 for the limiting
form of the heat function and at a higher rate for
the experimental variation of reference 4. If the
convective input to the face is regarded as a per-
turbation and evaluated at every point of a tra-
jectory established under radiation dominance,
the limits of radiation dominance may be found.
The convective heating rate to the face is

. 3 r
5B (D i
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The integrated convective input to the face of the blunted cones is thus

T (e
Qc—_4 hs (Qst>ca

D 3/2 3/2 ©
7)L f U1 (1—N)*2des

(A12)

The ratio of convective to radiative inputs for limiting trajectories is found to be

since, for limiting trajectories, @, is the heat ca-
pacity of the probe volume.

When the ratio @,/Q, is evaluated for one limit-
ing trajectory, it can be scaled to all other values
of L by applying the pz=Constant change which
vields the following scaling laws for the case of

gN=K1—N):
olog @, _

dlog L (A14)
Olog @, 3 _(n—Dr
dlog L 2 [A— (A15)
Q.
Olog =°
S S WU )
olog L 2+m s—1 (A16)
and for the case of g(\)=K":
Olog @, _
dlog L =3 (A17)
olog Q.3 (=1 (1)
dlog L =3t s—1 (A18)
Q.
0 log X°
Q__3, _(@=1)—-1)
dlog L g1 s—1 (A19)

For the calculations made with the limiting heat
function g(A\)=K’, the associated exponents are
r=1 and s=3 so that the last members of equa-
tions (A18) and (A19) vanish. By use of either
equation (A16) or (A19) and the value of Q./Q-
for a single trajectory the value of L at which
Q.= @, may be found. With a limiting trajectory
for g(\)=K’, a blunted cone of L=8 feet, and

A—=0.70, the ratio Q./Q, is found to be 3X1073.
After extrapolation to unit ratio by use of equa-
tion (A19) the corresponding value of L is 31072
feet. 'This length is small enough to be out of the
range of conceivable probe sizes and, in fact, beyond

(A13)

the scope of the analysis.

For the cylindrical shapes on the heating fune-
tion g(\)=K(1—)) there is an indicated choice of
proportions which does not appear on the limiting
function g(\)=K’. If a given amount of heat-
protection material is considered, & volume con-
straint of the form

D?L=Constant (A20)
If L is regarded as variable at constant

@) Qfor
do =L

is implied.

volume, and it is recalled that

g\ =K(1—N\), a p-z change results in

L7201~ Constant (A21)
When 7>>3/2, it is found that U;—»w for L-—0
and the cylinder becomes an infinitely thin wafer
of infinite diameter. When r<(3/2, U,—« for
L— and the cylinder becomes an infinitely long
needle of zero diameter. The high-mass-loss
regions for the two cases are at w=—ow for the
wafer and at w=w for the rod. For the limiting
function g(A\) =K', the limiting velocity was shown
to be independent of the proportions.

The relative heat inputs to the face and to the
flanks of the truncated cones can be roughly esti-
mated. If, in the case of convection, the flank
input is considered to be the same at each axial
station as that to a swept cylinder with the same
radius as the local cone radius, and the loss of
material on the flanks is neglected, it turns out that

(@amme 1

(@) (A22)

so that the flank input can be greater than, but
remains comparable to, the face input. The
regime of radiation dominance on the face thus
implies dominance on the vehicle.



18 TECHNICAL REPORT R—162—NATIONAL

Let the radiative input to the flanks be put on
the same basis as that to the face. That is, let
the fraction 7 of the kinetic energy of the impinging
flow which is due to the component of free-stream
velocity normal to the surface be converted into
heat on the flanks. It is found, after integration,

AERONAUTICS AND SPACE ADMINISTRATION

that
(A23)

Qo 3@

For D/L 0.3 the flank input is less than 5 percent
of the radiative face input according to relation
(A23).
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